VENDU
In-4 (243 x 187 mm), 4 ff.n.ch., 344 pp., 13 planches hors-texte. Veau marbré, dos à nerfs orné, tranches rouges (reliure dans le style de l’époque).
Rupture de stock
Gray, 279; Wallis, 279 (“includes much new material”); Babson, 204.
Troisième édition, publiée par ‘sGravesande et enrichie de textes supplémentaires de Halley, Moivre, MacLaurin, Campbell, etc.
Imprimée pour la première fois en latin à Cambridge en 1707 elle est basée sur les notes de cours par Newton pour la période 1673-1683. L’Arithmetica Universalis forme un complément important aux Principia.
“The Arithmetica Universalis was first printed in London in 1707, edited by William Whiston, who ‘extracted from Newton a somewhat reluctant permission to print it. Among several new theorems on various points in algebra and the theory of equations, Newton here enunciates the following important results. He explains that the equation whose roots are a solution of a given problem will have as many roots as their are different probable cases… He extends Descartes’ rules of signs to give limits to the number of imaginary roots… The most interesting theorem contained in the work is his attempt to find a rule (analogous to that of Descartes for real roots) by which the number of imaginary roots of a equation can be determined” (Ball, A Short History of Mathematics, pp. 330-331).
Bon exemplaire.
Du lundi au samedi
10h – 13h et 14h30 – 19h
(18h les lundi et samedi)
© 2023 Tout droit réservé.